Skip to contents

Introduction

The miRNA Enrichment Analysis and Annotation Tool (miEAA) is a service provided by the Chair for Clinical Bioinformatics at Saarland University. Basically, miEAA is a multi-species microRNA enrichment analysis tool. For more information, see their website or published paper.


First, find enrichment categories

Before Performing enrichment analysis on a miRNA set, note that based on your input miRNA type (either all mature or precursor, not a mixture of both!) and the species, there will be different sets of supported enrichment categories.

Thus, it is recommended to retrieve a list of possible enrichment categories that you may use:

## A list of available enrichment categories for:
## mature human miRNA:
rba_mieaa_cats(mirna_type = "mature", species = 9606)
## precursor human miRNA
rba_mieaa_cats(mirna_type = "precursor", species = 9606)
## precursor zebrafish miRNA
rba_mieaa_cats(mirna_type = "mature", species = "Danio rerio")

Submit Enrichment analysis request to miEAA

There are two approaches to do this, we will start with the simpler one.

Approach 1: Using the Wrapper function

Just fill the arguments of rba_mieaa_enrich() according to the function’s manual; As you can see in the function’s arguments, you have a lot of controls over your enrichment request, but you need to provide test_set, mirna_type, test_type, and species:

## 1 We create a variable with our miRNAs' mature IDs
mirs <- c("hsa-miR-20b-5p", "hsa-miR-144-5p", "hsa-miR-17-5p", "hsa-miR-20a-5p",
         "hsa-miR-222-3p", "hsa-miR-106a-5p", "hsa-miR-93-5p", "hsa-miR-126-3p",
         "hsa-miR-363-3p", "hsa-miR-302c-3p", "hsa-miR-374b-5p", "hsa-miR-18a-5p",
         "hsa-miR-548d-3p", "hsa-miR-135a-3p", "hsa-miR-558", "hsa-miR-130b-5p",
         "hsa-miR-148a-3p")
## 2a We can perform enrichment analysis on our miRNA set without limiting the analysis to any categories
mieaa_all <- rba_mieaa_enrich(test_set = mirs,
                             mirna_type = "mature",
                             test_type = "ORA",
                             species = 9606)
#>  -- Step 1/3: Submitting Enrichment analysis request:
#> No categories were supplied, Requesting enrichment using all of the 32 available categories for species 'Homo sapiens'.
#> Submitting ORA enrichment request for 17 miRNA IDs of species Homo sapiens to miEAA servers.
#> 
#>  -- Step 2/3: Checking for Submitted enrichment analysis's status every 5 seconds.
#>     Your submitted job ID is: ef305b1f-9f4e-439d-91fd-54bea048d514
#> ......
#> 
#>  -- Step 3/3: Retrieving the results.
#> Retrieving results of submitted enrichment request with ID: ef305b1f-9f4e-439d-91fd-54bea048d514
## 2b Or, We can limit the enrichment to certain datasets (enrichment categories)
mieaa_kegg <- rba_mieaa_enrich(test_set = mirs,
                              mirna_type = "mature",
                              test_type = "ORA",
                              species = 9606,
                              categories = "KEGG_mature"
                             )
#>  -- Step 1/3: Submitting Enrichment analysis request:
#> Submitting ORA enrichment request for 17 miRNA IDs of species Homo sapiens to miEAA servers.
#> 
#>  -- Step 2/3: Checking for Submitted enrichment analysis's status every 5 seconds.
#>     Your submitted job ID is: 662219f2-0fea-41d9-907a-68fca28f8f27
#> .
#> 
#>  -- Step 3/3: Retrieving the results.
#> Retrieving results of submitted enrichment request with ID: 662219f2-0fea-41d9-907a-68fca28f8f27

Approach 2: Going step-by-step

As stated before, rba_mieaa_enrich() is a wrapper function, meaning that it executes the following sequence of functions:

## 1 Submit enrichment request to miEAA
request <- rba_mieaa_enrich_submit(test_set = mirs,
                                  mirna_type = "mature",
                                  test_type = "ORA",
                                  species = 9606,
                                  categories = c("miRWalk_Diseases_mature",
                                                 "miRWalk_Organs_mature")
                                  )
## 2 check for job's running status
rba_mieaa_enrich_status(job_id = request$job_id)

## 3 If the job has completed, retrieve the results
results <- rba_mieaa_enrich_results(job_id = request$job_id)

Please Note: Other services supported by rbioapi also provide Over-representation analysis tools. Please see the vignette article Do with rbioapi: Over-Representation (Enrichment) Analysis in R (link to the documentation site) for an in-depth review.


Convert miRNA accessions

miEAA only recognizes miRBASE version 22 accessions. You can use rba_mieaa_convert_version() to convert miRNA accession between different miRBASE versions. Also, as stated before, miEAA differentiate between precursor and mature miRNA accessions, to convert between these 2 accession types, use rba_mieaa_convert_type().


How to Cite?

To cite miEAA (Please see https://ccb-compute2.cs.uni-saarland.de/mieaa2/):

  • Fabian Kern, Tobias Fehlmann, Jeffrey Solomon, Louisa Schwed, Nadja Grammes, Christina Backes, Kendall Van Keuren-Jensen, David Wesley Craig, Eckart Meese, Andreas Keller, miEAA 2.0: integrating multi-species microRNA enrichment analysis and workflow management systems, Nucleic Acids Research, Volume 48, Issue W1, 02 July 2020, Pages W521–W528, https://doi.org/10.1093/nar/gkaa309

To cite rbioapi:

  • Moosa Rezwani, Ali Akbar Pourfathollah, Farshid Noorbakhsh, rbioapi: user-friendly R interface to biologic web services’ API, Bioinformatics, Volume 38, Issue 10, 15 May 2022, Pages 2952–2953, https://doi.org/10.1093/bioinformatics/btac172

Session info

#> R version 4.4.2 (2024-10-31)
#> Platform: x86_64-pc-linux-gnu
#> Running under: Ubuntu 24.04.1 LTS
#> 
#> Matrix products: default
#> BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0
#> 
#> locale:
#>  [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
#>  [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
#>  [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
#> [10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   
#> 
#> time zone: UTC
#> tzcode source: system (glibc)
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices utils     datasets  methods   base     
#> 
#> other attached packages:
#> [1] rbioapi_0.8.1
#> 
#> loaded via a namespace (and not attached):
#>  [1] httr_1.4.7        cli_3.6.3         knitr_1.49        rlang_1.1.4      
#>  [5] xfun_0.50         textshaping_0.4.1 jsonlite_1.8.9    DT_0.33          
#>  [9] htmltools_0.5.8.1 ragg_1.3.3        sass_0.4.9        rmarkdown_2.29   
#> [13] crosstalk_1.2.1   evaluate_1.0.3    jquerylib_0.1.4   fastmap_1.2.0    
#> [17] yaml_2.3.10       lifecycle_1.0.4   compiler_4.4.2    fs_1.6.5         
#> [21] htmlwidgets_1.6.4 systemfonts_1.1.0 digest_0.6.37     R6_2.5.1         
#> [25] curl_6.1.0        magrittr_2.0.3    bslib_0.8.0       tools_4.4.2      
#> [29] pkgdown_2.1.1     cachem_1.1.0      desc_1.4.3